domingo, 25 de julio de 2010

Entanglement Achieved in Solid-State Circuitry

Entanglement Achieved in Solid-State Circuitry


This is an SEM image of a typical Cooper pair splitter. The bar is 1 micrometer. A central superconducting electrode (blue) is connected to two quantum dots engineered in the same single wall carbon nanotube (in purple). Entangled electrons inside the superconductor can be coaxed to move in opposite directions in the nanotube, ending up at separate quantum dots, while remaining entangled. (Credit: L.G. Herrmann, F. Portier, P. Roche, A. Levy Yeyati, T. Kontos, and C. Strunk)


Entanglement Achieved in Solid-State Circuitry
ScienceDaily (Jan. 12, 2010) — For the first time, physicists have convincingly demonstrated that physically separated particles in solid-state devices can be quantum-mechanically entangled. The achievement is analogous to the quantum entanglement of light, except that it involves particles in circuitry instead of photons in optical systems.


Both optical and solid-state entanglement offer potential routes to quantum computing and secure communications, but solid-state versions may ultimately be easier to incorporate into electronic devices.

In optical entanglement experiments, a pair of entangled photons may be separated via a beam splitter. Despite their physical separation, the entangled photons continue to act as a single quantum object. A team of physicists from France, Germany and Spain has now performed a solid-state entanglement experiment that uses electrons in a superconductor in place of photons in an optical system.

As conventional superconducting materials are cooled, the electrons they conduct entangle to form what are known as Cooper pairs. In the new experiment, Cooper pairs flow through a superconducting bridge until they reach a carbon nanotube that acts as the electronic equivalent of a beam splitter. Occasionally, the electrons part ways and are directed to separate quantum dots -- but remain entangled. Although the quantum dots are only a micron or so apart, the distance is large enough to demonstrate entanglement comparable to that seen in optical systems.

In addition to the possibility of using entangled electrons in solid-state devices for computing and secure communications, the breakthrough opens a whole new vista on the study of quantum mechanically entangled systems in solid materials.

The experiment is reported in an upcoming issue of Physical Review Letters and highlighted with a Viewpoint in the January 11 issue of Physics.

LUIS RINCON
CEDULA: 18257927
MATERIA: EES
SECCION: 2

Scientists Create Multi-Particle Entanglement of Atoms in a Bose-Einstein Condensate on a Microchip

Scientists Create Multi-Particle Entanglement of Atoms in a Bose-Einstein Condensate on a Microchip


Scientists Create Multi-Particle Entanglement of Atoms in a Bose-Einstein Condensate on a Microchip
ScienceDaily (Apr. 6, 2010) — The microcosm, the realm of quantum physics, is ruled by probability and chance. The behaviour of quantum particles cannot be predicted with certainty but only with certain probabilities given by quantum physics. This results in a so-called quantum noise, which fundamentally limits the precision of the most refined atomic clocks and interferometers. The solution to this problem is the use of entangled atomic systems.


A breakthrough has now been achieved by a team led by Professor Theodor W. Hänsch and Professor Philipp Treutlein (Ludwig-Maximilians-Universität Munich and Max Planck Institute of Quantum Optics in Garching, Philipp Treutlein is Professor at the Universität Basel since February 2010). For the first time, the scientists succeeded in generating multi-particle entanglement on an atom-chip, according to a report published in the journal Nature. This technique opens a way to significantly enhance the precision of chip-based atomic clocks or interferometers and could also form the basis for quantum computers on microchips. The Munich experiments have been carried out in cooperation with theoretical physicists around Dr. Alice Sinatra from the Ecole Normale Supérieure (ENS) in Paris.

Entanglement is one of the most fascinating phenomena of physics. Once two particles are prepared in an entangled state, they loose their individuality and have to be treated as one single system. Whatever happens to one of the particles it will have an instantaneous impact on the other one, independent of the distance between the particles. Already 80 years ago Albert Einstein dubbed this phenomenon which contradicts every intuition 'spooky action at a distance'. Entanglement is a strict consequence of quantum theory, yet it was not before the last decade of the twentieth century that entangled states of atoms could be experimentally generated and verified. This opened up the possibility to not only get a better understanding of this mysterious phenomenon but also to make use of it for technical applications such as communication, metrology and computing.

In the experiment described here the Munich group succeeded for the first time to generate entanglement on an atom chip. An atom chip is a microstructured chip that is able to store and manipulate single atoms or atomic clouds. Atom chips have already shown to be versatile tools, both for the study of fundamental problems of quantum physics and for a number of interesting applications. For instance, a chip-based atomic clock, which is suitable for portable use, has been developed using this technology. However, up to now no method existed to generate entanglement on a chip. And as long as atomic clocks run with atoms that are independent of each other, their precision will be limited by the fundamental quantum noise.

Two years ago the theoretical physicists Alice Sinatra and Li Yun developed, in cooperation with the group of Philipp Treutlein, a concept how to suppress this quantum noise. The experiment starts with trapping a cloud of rubidium atoms on the chip and cooling it down to less than a millionth of a degree above absolute zero. At these temperatures the atoms form a Bose-Einstein condensate (BEC), a new state, in which all the atoms are in the same well-defined quantum state. The rubidium atoms can be described by a so-called spin, which can be oriented either upwards or downwards. The ground state of the atoms in the BEC corresponds to a downwards oriented spin. A microwave pulse which is applied to the BEC now rotates the spins such that each atom is in a superposition of both spin states.

The BEC is then exposed to a state-dependent potential which is exerted by a second microwave field. "Under the influence of this field the atoms are only allowed to collide with atoms of the same spin state. Therefore the dynamic evolution of their states depends on the states of all other atoms. This effect leads to an entanglement of the atoms," explains Max Riedel, doctoral student at the experiment.

In a measurement on a BEC of non-entangled atoms, on average half of the atoms are found in the ground state (spin downwards), the other half in the excited state (spin upwards). "Deviations from this mean value that occur from measurement to measurement, lead to a quantum noise that is evenly distributed among the spin components orthogonal to the mean spin," adds Pascal Böhi, another doctoral student.

In order to investigate the influence of the state-dependent potential on the quantum noise the scientists determined the noise for each spin component using yet another microwave pulse. As they could clearly demonstrate, for one spin component the noise could be "squeezed" below the limit given by the Heisenberg uncertainty relation. From the observed noise reduction the scientists concluded that inside the BEC clusters of at least four atoms are entangled.

Using entangled ensembles of atoms the precision of atomic clocks could be increased significantly. Further applications include highly sensitive atom interferometers for the detection of extremely weak forces and the realisation of a quantum gate, a key element in future quantum computers. But the scientists also hope to get a deeper understanding of the processes that lead to quantum correlations in quantum many body systems.

The experiments were carried out with support from the Deutsche Forschungsgemeinschaft in the framework of the cluster of excellence "Nanosystems Initiative Munich (NIM)" and with support from the European Union in the framework of the project "Atomic Quantum Technologies (AQUTE)."

LUIS RINCON
CEDULA: 18257927
MATERIA: EES
SECCION: 2

'Butterfly Effect' in the Brain Makes the Brain Intrinsically Unreliable

'Butterfly Effect' in the Brain Makes the Brain Intrinsically Unreliable


'Butterfly Effect' in the Brain Makes the Brain Intrinsically Unreliable
ScienceDaily (July 1, 2010) — Next time your brain plays tricks on you, you have an excuse: according to new research by UCL scientists published June 30 in the journal Nature, the brain is intrinsically unreliable.


This may not seem surprising to most of us, but it has puzzled neuroscientists for decades. Given that the brain is the most powerful computing device known, how can it perform so well even though the behaviour of its circuits is variable?

A long-standing hypothesis is that the brain's circuitry actually is reliable -- and the apparently high variability is because your brain is engaged in many tasks simultaneously, which affect each other.

It is this hypothesis that the researchers at UCL tested directly. The team -- a collaboration between experimentalists at the Wolfson Institute for Biomedical Research and a theorist, Peter Latham, at the Gatsby Computational Neuroscience Unit -- took inspiration from the celebrated butterfly effect -- from the fact that the flap of a butterfly's wings in Brazil could set off a tornado in Texas. Their idea was to introduce a small perturbation into the brain, the neural equivalent of butterfly wings, and ask what would happen to the activity in the circuit. Would the perturbation grow and have a knock-on effect, thus affecting the rest of the brain, or immediately die out?

It turned out to have a huge knock-on effect. The perturbation was a single extra 'spike', or nerve impulse, introduced to a single neuron in the brain of a rat. That single extra spike caused about thirty new extra spikes in nearby neurons in the brain, most of which caused another thirty extra spikes, and so on. This may not seem like much, given that the brain produces millions of spikes every second. However, the researchers estimated that eventually, that one extra spike affected millions of neurons in the brain.

"This result indicates that the variability we see in the brain may actually be due to noise, and represents a fundamental feature of normal brain function," said lead author Dr. Mickey London, of the Wolfson Institute for Biomedical Research, UCL.

This rapid amplification of spikes means that the brain is extremely 'noisy' -- much, much noisier than computers. Nevertheless, the brain can perform very complicated tasks with enormous speed and accuracy, far faster and more accurately than the most powerful computer ever built (and likely to be built in the foreseeable future). The UCL researchers suggest that for the brain to perform so well in the face of high levels of noise, it must be using a strategy called a rate code. In a rate code, neurons consider the activity of an ensemble of many neurons, and ignore the individual variability, or noise, produced by each of them.

So now we know that the brain is truly noisy, but we still don't know why. The UCL researchers suggest that one possibility is that it's the price the brain pays for high connectivity among neurons (each neuron connects to about 10,000 others, resulting in over 8 million kilometres of wiring in the human brain). Presumably, that high connectivity is at least in part responsible for the brain's computational power. However, as the research shows, the higher the connectivity, the noisier the brain. Therefore, while noise may not be a useful feature, it is at least a by-product of a useful feature.

LUIS RINCON
CEDULA: 18257927
MATERIA: EES
SECCION: 2

Redefining Electrical Current Law With the Transistor Laser

Redefining Electrical Current Law With the Transistor Laser


Redefining Electrical Current Law With the Transistor Laser
ScienceDaily (May 17, 2010) — While the laws of physics weren't made to be broken, sometimes they need revision. A major current law has been rewritten thanks to the three-port transistor laser, developed by Milton Feng and Nick Holonyak Jr. at the University of Illinois.




With the transistor laser, researchers can explore the behavior of photons, electrons and semiconductors. The device could shape the future of high-speed signal processing, integrated circuits, optical communications, supercomputing and other applications. However, harnessing these capabilities hinges on a clear understanding of the physics of the device, and data the transistor laser generated did not fit neatly within established circuit laws governing electrical currents.

"We were puzzled," said Feng, the Holonyak Chair Professor of Electrical and Computer Engineering. "How did that work? Is it violating Kirchhoff's law? How can the law accommodate a further output signal, a photon or optical signal?"

Kirchhoff's current law, described by Gustav Kirchhoff in 1845, states charge input at a node is equal to the charge output. In other words, all the electrical energy going in must go out again. On a basic bipolar transistor, with ports for electrical input and output, the law applies straightforwardly. The transistor laser adds a third port for optical output, emitting light.

This posed a conundrum for researchers working with the laser: How were they to apply the laws of conservation of charge and conservation of energy with two forms of energy output?

"The optical signal is connected and related to the electrical signals, but until now it's been dismissed in a transistor," said Holonyak, the John Bardeen Chair Professor of Electrical and Computer Engineering and Physics at the U. of I. "Kirchhoff's law takes care of balancing the charge, but it doesn't take care of balancing the energies. The question is, how do you put it all together, and represent it in circuit language?"

The unique properties of the transistor laser required Holonyak, Feng and graduate student Han Wui Then to re-examine and modify the law to account for photon particles as well as electrons, effectively expanding it from a current law to a current-energy law. They published their model and supporting data in the Journal of Applied Physics, available online May 10.

"The previous law had to do with the particles -- electrons coming out at a given point. But it was never about energy conservation as it was normally known and used," Feng said. "This is the first time we see how energy is involved in the conservation process."

Simulations based on the modified law fit data collected from the transistor laser, allowing researchers to predict the bandwidth, speed and other properties for integrated circuits, according to Feng. With accurate simulations, the team can continue exploring applications in integrated circuits and supercomputing.

"This fits so well, it's amazing," Feng said. "The microwave transistor laser model is very accurate for predicting frequency-dependent electrical and optical properties. The experimental data are very convincing."

The Army Research Office supported this work.

LUIS RINCON
CEDULA: 18257927
MATERIA: EES
SECCION: 2

IXYS Introduces Super Low Noise pHEMT Technology Devices For Microwave Applications Up To 38 GHz

IXYS Introduces Super Low Noise pHEMT Technology Devices For Microwave Applications Up To 38 GHz


IXYS Introduces Super Low Noise pHEMT Technology Devices For Microwave Applications Up To 38 GHz
FREMONT, Calif., Jul 01, 2010 (BUSINESS WIRE) -- MicroWave Technology, Inc. (MwT), a wholly owned subsidiary of IXYS Corporation , announced that it has introduced a family of three AlGaAs/InGaAs based low noise pHEMT devices with extremely low noise figures with operational frequency up to 38 GHz.

These low noise devices are MwT-LN240, MwT-LN300 and MwT-LN600. The super low noise devices are fabricated using high reliability AlGaAs/InGaAs pHEMT (pseudomorphic High Electron Mobility Transistor) process with a nominal 0.15 micron gate length and gate widths of 240 um, 300 um, and 600 um, respectively. These devices are equally effective for wideband (e.g. 6-18 GHz or 18-26 GHz) and narrow band applications up to 38 GHz. With minimum noise figure as low as 0.5 dB at 12 GHz with 2.5V drain bias, these low noise devices are ideally suited for commercial wireless and military applications requiring very low noise figure and high associated gain. These devices are targeted at wide range applications including broadband military EW and defense communications, wireless communication infrastructures, point-to-point microwave radios, space/high rel, instrumentation and medical equipment.

This new family of MwT low noise device is an ideal choice to replace low noise pHEMT devices from NEC, Eudyna/Sumitomo, Mitsubishi, etc. The wafer can be screened to meet high quality and reliability requirements for military and space applications. These devices are also available in surface mount packages such as MwT-71 package. The complete noise models such as "gamma opt" and noise parameters over frequency range are available for these devices to aid circuit design simulations. An application note on active bias circuitry for setting and stabilizing the gate bias is also available.

As an application support vehicle, MwT has developed 11 to 13 GHz hybrid modules using an MwT-LN240 (a 240 micrometer device) with a noise figure as low as 0.7 dB. A 6 to 18 GHz balanced amplifier module using a pair of MwT-LN240 devices has achieved noise figure between 1.5 and 1.7 dB across the band. The exceptionally good RF performances from these hybrid amplifiers have convincingly demonstrated the state-of-the-art noise performance for the MwT-LN series low noise devices, as well as the superior design capability for low noise amplifiers at MwT.


LUIS RINCON
CEDULA: 18257927
MATERIA: EES
SECCION: 2

Cell-inspired electronics

Cell-inspired electronics


Cell-inspired electronics
By mimicking cells, MIT researcher designs electronic circuits for ultra-low-power and biomedical applications.
A single cell in the human body is approximately 10,000 times more energy-efficient than any nanoscale digital transistor, the fundamental building block of electronic chips. In one second, a cell performs about 10 million energy-consuming chemical reactions, which altogether require about one picowatt (one millionth millionth of a watt) of power.

MIT's Rahul Sarpeshkar is now applying architectural principles from these ultra-energy-efficient cells to the design of low-power, highly parallel, hybrid analog-digital electronic circuits. Such circuits could one day be used to create ultra-fast supercomputers that predict complex cell responses to drugs. They may also help researchers to design synthetic genetic circuits in cells.

In his new book, Ultra Low Power Bioelectronics (Cambridge University Press, 2010), Sarpeshkar outlines the deep underlying similarities between chemical reactions that occur in a cell and the flow of current through an analog electronic circuit. He discusses how biological cells perform reliable computation with unreliable components and noise (which refers to random variations in signals — whether electronic or genetic). Circuits built with similar design principles in the future can be made robust to electronic noise and unreliable electronic components while remaining highly energy efficient. Promising applications include image processors in cell phones or brain implants for the blind.

"Circuits are a language for representing and trying to understand almost anything, whether it be networks in biology or cars," says Sarpeshkar, an associate professor of electrical engineering and computer science. "There's a unified way of looking at the biological world through circuits that is very powerful."

Circuit designers already know hundreds of strategies to run analog circuits at low power, amplify signals, and reduce noise, which have helped them design low-power electronics such as mobile phones, mp3 players and laptop computers.

"Here's a field that has devoted 50 years to studying the design of complex systems," says Sarpeshkar, referring to electrical engineering. "We can now start to think of biology in the same way." He hopes that physicists, engineers, biologists and biological engineers will work together to pioneer this new field, which he has dubbed "cytomorphic" (cell-inspired or cell-transforming) electronics.

Finding connections

Sarpeshkar, an electrical engineer with many years of experience in designing low-power and biomedical circuits, has frequently turned his attention to finding and exploiting links between electronics and biology. In 2009, he designed a low-power radio chip that mimics the structure of the human cochlea to separate and process cell phone, Internet, radio and television signals more rapidly and with more energy efficiency than had been believed possible.

That chip, known as the RF (radio frequency) cochlea, is an example of "neuromorphic electronics," a 20-year-old field founded by Carver Mead, Sarpeshkar's thesis advisor at Caltech. Neuromorphic circuits mimic biological structures found in the nervous system, such as the cochlea, retina and brain cells.

Sarpeshkar's expansion from neuromorphic to cytomorphic electronics is based on his analysis of the equations that govern the dynamics of chemical reactions and the flow of electrons through analog circuits. He has found that those equations, which predict the reaction's (or circuit's) behavior, are astonishingly similar, even in their noise properties.

Chemical reactions (for example, the formation of water from hydrogen and oxygen) only occur at a reasonable rate if enough energy is available to lower the barriers that prevent such reactions from occurring. A catalyst such as an enzyme can lower such barriers. Similarly, electrons flowing through a circuit in a transistor exploit input voltage energy to allow them to reduce the barrier for electrons to flow from the transistor's source to the transistor's drain. Changes in the input voltage lower the barrier and increase current flow in transistors, just as adding an enzyme to a chemical reaction speeds it up.

Essentially, cells may be viewed as circuits that use molecules, ions, proteins and DNA instead of electrons and transistors. That analogy suggests that it should be possible to build electronic chips — what Sarpeshkar calls "cellular chemical computers" — that mimic chemical reactions very efficiently and on a very fast timescale.

One potentially powerful application of such circuits is in modeling genetic network — the interplay of genes and proteins that controls a cell's function and fate. In a paper presented at the 2009 IEEE Symposium on Biological Circuits and Systems, Sarpeshkar designed a circuit that allows any genetic network reaction to be simulated on a chip. For example, circuits can simulate the interactions between genes involved in lactose metabolism and the transcription factors that regulate their expression in bacterial cells.

In the long term, Sarpeshkar plans to develop circuits that mimic interactions within entire cellular genomes, which are important in enabling scientists to understand and treat complex diseases such as cancer and diabetes. Eventually, researchers may be able to use such chips to simulate the entire human body, he believes. Such chips would be much faster than computer simulations now, which are highly inefficient at modeling the effects of noise in the large-scale nonlinear circuits within cells.

He is also investigating how circuit design principles can help genetically engineer cells to perform useful functions, for example, the robust and sensitive detection of toxins in the environment.

Sarpeshkar's focus on modeling cells as analog rather than digital circuits offers a new approach that will expand the frontiers of synthetic biology, says James Collins, professor of biomedical engineering at Boston University. "Rahul has nicely laid a foundation that many of us in synthetic biology will be able to build on," he says.

LUIS RINCON
CEDULA: 18257927
MATERIA: EES
SECCION: 2

Molekularer Maschendraht für Chips der Zukunft

Molekularer Maschendraht für Chips der Zukunft


Molekularer Maschendraht für Chips der Zukunft
Halbleitende Graphen-Bänder lassen sich gezielt aus Molekülen zusammensetzen

Graphen-Bänder in Zickzack-Struktur (Grafik)
© Empa Mit Kohlenstoff statt Silizium könnten die Transistoren der Zukunft weiter schrumpfen und nur noch mit wenigen Elektronen zwischen "0" und "1" schalten. Galten dafür bislang die vielseitigen Nanoröhrchen als viel versprechendes Material, könnten sie nun von winzigen Bänder aus Graphen – das sind nur eine Atomlage dünne Kohlenstoff-Strukturen – verdrängt werden. Deutsche und schweizerrische Wissenschaftler entwickelten eine elegante Methode, um solche nur Millionstel Millimeter schmalen Bänder mit halbleitenden Eigenschaften herzustellen. In der Zeitschrift "Nature" erläutern sie ihr "Bottom-Up"-Verfahren, das Graphen-Bändern den Weg in die Mikroelektronik ebnen könnte.
"Mit unserer Methode können wir die Bandlücke – die zentrale Voraussetzung für Halbleiter – gezielt einstellen", sagt Roman Fasel vom Schweizer Materialforschungsinstitut Empa in Dübendorf. Zusammen mit Kollegen des Max-Planck-Instituts für Polymerforschung in Mainz sowie der ETH Zürich und von den Universitäten Zürich und Bern setzte er kleinere Moleküle aus Kohlenstoff, Wasserstoff und Halogenen auf hochreine Gold- oder Silberoberflächen. Hier verknüpften sie sich zu längeren Polymerketten. Aufgeheizt auf etwa 440 Grad Celsius, lösten sich Wasserstoff- und Halogenatome ab. Zurück blieben Nanobänder aus Graphen mit genau definierter Struktur.

Je nach Art der zu Beginn verwendeten Monomere entstanden entweder gradlinige oder zickzackförmige Graphenbänder. Diese Strukturen sind verantwortlich für die Größe der elektronischen Bandlücke, die die Schalteigenschaften in einem Transistor oder die Lichtfarbe in Leucht- und Laserdioden beeinflussen. Ein wesentlicher Vorteil im Vergleich zu halbleitenden Nanoröhrchen aus Kohlenstoff liegt in der Sortenreinheit dieser Graphen-Bänder.

Um erste Transistoren aus den Nanobändern herstellen zu können, wollen die Forscher ihre Graphen-Strukturen nun auf Siliziumdioxid statt auf Metallflächen wachsen lassen. Auch an einer Methode zur zerstörungsfreien Ablösung der Graphen-Bänder von der Metalloberfläche wird derzeit gearbeitet.

Erst 2004 erstmals entdeckt, scheinen sich die hauchdünnen Graphen-Strukturen zu einem neuen Schlüsselmaterial für elektronische Anwendungen zu entwickeln. So berichteten koreanische Forscher vor wenigen Wochen, dass sie erfolgreich große Flächen aus Graphen mit einem einfachen Verfahren produzieren konnten. Mit diesen fertigten sie einen flexiblen und zugleich berührungsempfindlichen Flachbildschirm. "Die Graphen-Forschung boomt derzeit und das Material hat in vielen Bereichen den Nanoröhrchen schon die Show gestohlen", sagt Fasel.


LUIS RINCON
CEDULA: 18257927
MATERIA: EES
SECCION: 2

Graphene Grows Up

Graphene Grows Up


Graphene Grows Up



Whether as used for circuitry for displays and detectors or oxidized to produce emissive materials, graphene promises to advance photonics
22 July 2010, SPIE Newsroom. DOI: 10.1117/2.2201007.02
Nanoscale carbon has been making headlines for more than two decades. Whether furled up in carbon nanotubes or assembled into cagelike fullerenes, carbon at the atomic scale shows great potential in everything from photovoltaics to ultra-strong composite materials. Now, graphene -- thin, planar sheets of carbon -- promises to advance photonics with improved detectors, display circuitry, and even emitters.

Graphene is a semi-metal that consists of a hexagonal lattice of carbon atoms, typically in a single atomic layer. It interacts very strongly with light, absorbing approximately 2.3% of incident photons at any wavelength. This unusual broadband behavior makes it enormously appealing for optoelectronic applications such as saturable absorbers for modelocking lasers.

At Cambridge University (Cambridge, UK), researchers led by Nanomaterials and Spectroscopy Group head Andrea Ferrari have used graphene-based saturable absorbers to mode lock tunable lasers. "We first created a laser working at the telecom window at 1550 nm and now we have lasers based on graphene saturable absorbers that can produce 200-fs pulses as well as work over a broad wavelength range."

Another intriguing graphene application is as a more economical substitute for indium tin oxide (ITO), the transparent conductor typically used for contacts in displays. Indium is a relatively scarce material. As displays -- and the demand for ITO -- rise, the price of ITO promises to increase, driving manufacturers to seek out alternatives. Graphene not only consists of plentiful, cheap carbon, it is also less brittle and more flexible than ITO.

"Graphene may not be as good compared to ITO if you just look at the transparency and conductivity, but if you can find applications where the properties of graphene are good enough or you get some other distinct advantages over ITO, then you can justify the use of graphene oxide or reduced graphene oxides for these applications," says Manish Chhowalla, associate professor at Rutgers University (New Brunswick, NJ).

Chhowalla's group collaborated with groups at Umeå University (Umeå, Sweden) and Linköping University (Linköping, Sweden) to produce light-emitting electrochemical cells (LECs) enabled by graphene contacts.1 LECs use electrolytes as the active media. They offer benefits for light emission but the electrolytes tend to react with ITO, reducing the electro-chemical stability of the conductor. For the technology to compete with organic light-emitting diodes (OLEDs), it requires a more suitable transparent conductor like the graphene.

The researchers were able to deposit the electrodes on the LEC from solution, producing light from an essentially all-organic device. "The key thing is that we have an electronically active material that can be processed from a solution," says Chhowalla. "Once you have that, there are techniques readily available to do the patterning and device fabrication." Methods include inkjet printing or stamping or roll-to-roll types of processes.

Watching the Detectors
Graphene can exhibit ballistic transport and in diffusive transport features extremely high electron mobilities. Although researchers have engineered bilayer graphene structures with bandgaps, natural graphene is a zero-band-gap material. Unlike for typical III-V semiconductors, that band structure is symmetric. These characteristics can be particularly useful for photodetectors in which graphene is the active medium. Because the work functions of graphene and metal contacts are generally different, the graphene valence and conduction bands undergo a gradual distortion near the metal-graphene interface, which creates an electric field. That field acts to separate electron- hole pairs generated within a few hundred nanometers of the interface. As a result of the symmetric band structure, the electrons and holes feature comparable mobilities. That ensures a very fast photo response -- as high as 200,000 cm2/Vs in the suspended condition, according to Phaedon Avouris, manager, Nanometer Scale Science & Technology and IBM Fellow and IBM's T.J. Watson Research Center (Yorktown Heights, NY). "Also the Fermi velocity of carriers in graphene is an order of magnitude higher than in any other semiconductor," he says. "If you irradiate a graphene device near the contacts, you're going to get a very fast photocurrent."

In most photodetectors, a bias must be applied between the contacts to collect photocurrent. That bias generates dark current, which contributes to higher shot noise. A graphene-based photodetector requires no bias for photo current collection, so all the current generated in the device results from incident light. Taken together with the broadband response, these characteristics raised the prospect of an ultralow noise, ultra high-speed universal detector.

Of course, this is the real world where nothing comes easily. In general, the electric field generated at the graphene/source interface is the opposite of the electric field generated at graphene/drain interface. As a result, if incident radiation shines on both source and drain, the photo currents generated cancel each other out. To eliminate this problem, the IBM group first tried the obvious solution, masking the detector to irradiate only one set of contacts at a time. The device demonstrated a flat response over speeds from DC level to 40 GHz. In more recent work, the group developed interdigitated electrodes consisting of palladium, a high-work-function metal and titanium, a low-work-function metal (see Figure 1).2 Because the work functions differ, so do the electric fields they generate, which means that the photocurrents do not cancel. In tests at 10 Gb/s, the device demonstrated error-free detection.



Figure 1. Electrodes formed of interdigitated high- and low-work-function metals keeps the electric fields generated at the contacts graphene detectors from canceling, opening the way for high-speed, broadband, low noise detectors. (Courtesy of IBM)
Go For the Glow
Converting graphene to graphene oxide yields a material with a relaxation time long enough to allow photoluminescence. Not only can graphene oxide generate output when optically pumped, it can do so at multiple wavelengths. Chhowalla's group, for example, used a pulsed UV source to obtain emission at both blue and red wavelengths, depending on how the material was processed.3

There is currently a debate underway regarding the exact mechanism that produces the luminescence. "There can be several different reasons for what we think is happening," says Chhowalla. "Graphene oxide contains carbon atoms bonded with oxygen functional groups but that carbon-oxygen bonding is not necessarily uniform. You might have four-or five-membered carbon rings where you don't have any oxygen bonding, so you have small molecular conducting regions within an insulating C-O matrix. These very tiny clusters of carbon have optical and electronic bandgaps associated with them. A larger cluster will have a smaller bandgap and a smaller cluster will have a larger bandgap. By tuning the size of the clusters, we can get red emission from clusters that are large and blue emission from clusters that are small."

Other researchers believe that the photoluminescence is an artifact of the oxygen. At Cambridge University, Ferrari's group has coaxed photoluminescence from graphene oxide produced using oxygen plasma.4 "We wanted to have individual graphene flakes produced by micromechanical exfoliation and in a controlled way cut them down to quantum dots," he says. "If you use a plasma, you can work at room temperature and it is much easier to control the process." He theorizes that the luminescence is due to oxygen related states at the oxidation sites, rather than confinement in small clusters.

Broadband non-linear photoluminescence is also possible in pristine graphene, says Ferrari, with several groups having observed this recently. In much the same way that an ultrafast laser can create a non-equilibrium carrier population and, thus, saturable absorption, these carriers can also recombine, giving rise to luminescence with no need to modify the pristine structure of graphene. Although the target of global interest, the research is in its infancy and gives rise to spirited debate about the physics, the materials characteristics, and even the practicality. Only time will tell whether graphene will eclipse graphene oxide in this area.With the constant global advances and applications such as ITO replacement under aggressive development by display manufacturers, it appears the chances are good we will see graphene products within a three to five year time horizon. "The progress the field has made in the last six years is incredible," says Ferrari. "Graphene optoelectronics and photonics has become a real technology."


LUIS RINCON
CEDULA: 18257927
MATERIA: EES
SECCION: 2

Miniature Energy Harvesting Technology Could Power Wireless Electronics

Miniature Energy Harvesting Technology Could Power Wireless Electronics


Miniature Energy Harvesting Technology Could Power Wireless Electronics
ScienceDaily (July 9, 2010) — The journal NanoLetters recently published an article highlighting the fascinating nanogenerators developed by Dr. Yong Shi, a professor in the Mechanical Engineering Department at Stevens Institute of Technology.


Dr. Shi's work focuses on miniature energy harvesting technologies that could potentially power wireless electronics, portable devices, stretchable electronics, and implantable biosensors. The concept involves piezoelectric nanowire- and nanofiber-based generators that would power such devices through a conversion of mechanical energy into electrical energy. Dr. Shi uses a piezoelectric nanogenerator based on PZT nanofibers. The PZT nanofibers, with a diameter and length of approximately 60 nm and 500 ìm, are aligned on interdigitated electrodes of platinum fine wires and packaged using a soft polymer on a silicon substrate. The measured output voltage and power under periodic stress application to the soft polymer was 1.63 V and 0.03 MicroWatts, respectively.

This amazing breakthrough in piezoelectric nanofiber research has incredible potential to enable new technology development across a multitude of science and engineering industries and related research.

"One of the major limitations of current active implantable biomedical devices is that they are battery powered. This means that they either have to be recharged or replaced periodically. Dr. Shi's group has demonstrated a technology that will allow implantable devices to recover some of the mechanical energy in flowing blood or peristaltic fluid movement in the GI tract to power smart implanable biomedical devices," says, Dr. Arthur Ritter, Director of Biomedical Engineering at Stevens. "The fact that his technology is based on nano-structures makes possible power supplies for nano-robots that can exist in the blood stream for extended periods of time and transmit diagnostic data, take samples for biopsy and/or send images wirelessly to external data bases for analysis."

Dr. Shi's groundbreaking work is part of a rich Institute-wide research community that investigates Nanotechnology and Multiscale Systems in a collaborative entrepreneurial environment.


LUIS RINCON
CEDULA: 18257927
MATERIA: EES
SECCION: 2

Two Brain Circuits Involved With Habitual Learning

Two Brain Circuits Involved With Habitual Learning

Two Brain Circuits Involved With Habitual Learning
ScienceDaily (June 10, 2010) — Driving to and from work is a habit for most commuters - we do it without really thinking. But before our commutes became routine, we had to learn our way through trial-and-error exploration. A new study out of MIT has found that there are two brain circuits involved with this kind of learning and that the patterns of activity in these circuits evolve as our behaviors become more habitual.



These different functions are thought to reside in different parts of basal ganglia. The dorsolateral part of the striatum (the input side of the basal ganglia) controls movement and is connected to the sensorimotor cortex, while the dorsomedial striatum controls flexible behavior and is connected to higher areas known as association cortex. But it has not been clear how these distinct circuits contribute to the learning of new behaviors.

Now for first time, researchers at MIT have recorded the activity of these two circuits in rats as they learned to navigate a maze, and found that the circuits have distinct patterns of activity that evolve during the course of learning.

The team led by Ann Graybiel, a MIT Institute Professor and member of the McGovern Institute for Brain Research, recorded the activity of thousands of neurons in the striatum as rats learned to find a cache of chocolate sprinkles at the end of a maze. As they approached a T-junction in the maze, the rats had to decide whether to turn right or left. The correct direction was indicated by a sound or a touch cue, the meaning of which the rats had to discover through trial-and-error. And just like human commuters, the rats performed this over and over again until the correct choice became routine.

As the rats' performance improved with repetition, the two different striatal circuits showed distinct patterns of activity. The dorsolateral striatal neurons were most active at the specific action points within the maze (start, stop, turn etc) and this pattern became steadily stronger with practice. The dorsomedial neurons, by contrast, showed highest activity around the decision period -- when the rat experienced the cue and had to decide which way to turn. These neurons were also most active as the rats were learning, and their activity declined in later trials once the rats had mastered the task.

"We think the two basal ganglionic circuits must work in parallel," said Catherine Thorn, first author of the study. "We see what looks like competition between the two circuits until the learned behavior becomes ingrained as a habit."

"These brain circuits are affected in Parkinson's disease, substance abuse and many psychiatric disorders," says Graybiel. "If we can learn how to tilt the competition in one direction or the other, we might help bring new focus to existing therapies, and possibly aid in the development of new therapies." But in terms of every day life, Graybiel adds, "it is good to know that we can train our brains to develop good habits and avoid bad ones."


Rats exhibit different patterns of neural activity in the dorsolateral and dorsomedial parts of the striatum while learning to navigate a maze. Dorsolateral striatal neurons are most active (red) when the rat performs specific actions like starting, turning, and stopping. Dorsomedial striatal neurons are most active when the rat is deciding which way to turn, but this activity declines over time as the rat masters the task. (Credit: Catherine Thorn/MIT)



LUIS RINCON
CEDULA: 18257927
MATERIA: EES
SECCION: 2

Quantum-dot comb laser with low relative-intensity noise for each mode

 


Quantum-dot comb laser with low relative-intensity noise for each mode

Quantum-dot comb laser with low relative-intensity noise for each mode


Multiple wavelengths emitted by a semiconductor laser can be used as independent channels for simple and affordable high-bandwidth parallel optical interconnects in photonic integrated circuits.
9 June 2008, SPIE Newsroom. DOI: 10.1117/2.1200806.1143
The field of silicon-based photonics is currently enjoying an explosion of research interest.1 Future progress in information processing and increased computer speed depend both on integrating micro- and optoelectronic devices and developing optical integrated circuits. Electrical interconnects have inherent bandwidth limitations that are spurring the quest for higher-bandwidth optical alternatives. The dense wavelength division multiplexing (DWDM) approach appears to be especially attractive for cost-efficient high-bandwidth chip-to-chip and board-to-board communications. In contrast to parallel optical solutions, DWDM relies on a single, simple, and cheap laser capable of emitting many spectrally separated channels. The use of 100 channels at 10Gb/s modulation would give 1Tb/s total bandwidth in one link. Because efficient lasing in silicon-based devices remains a challenge,2 future optical integrated circuits will likely include a III-V semiconductor laser integrated into a silicon chip.




Figure 1. Lasing spectra. (a) Overall spectrum around the mode of the maximum intensity. (b) Spectrally filtered mode. SMSR: Single-mode suppression ratio.
An attractive candidate for such a multiwavelength emitter is an edge-emitting (or Fabry–Perot, abbreviated FP) semiconductor laser. Wavelengths that correspond to different longitudinal modes of the FP resonator can be filtered out, separately modulated, and used as independent optical channels. In this case, channel separation is naturally determined by resonator length. All channels can be stabilized and tracked simultaneously.

A prerequisite for application of a multiwavelength light source in DWDM systems is low relative-intensity noise of each longitudinal mode (modal RIN). In single-frequency lasers with a large side mode suppression ratio (>40dB), the values of RIN are rather low. These lasers are suitable for telecommunications applications. In case of the conventional quantum well (QW) multimode (multifrequency) lasers, the value of RIN rises significantly due to random redistribution of mode intensity between longitudinal laser modes. In contrast, in quantum dot (QD) lasers, the nonlinear gain saturation effect is pronounced, and a strong decrease in RIN for individual FP modes can be achieved.





Figure 2. Spectrum of relative intensity noise (RIN) of filtered modal intensity at 1265.2nm.
We grew a QD laser structure by molecular beam epitaxy.3 The active area consisted of 10 planes of InAs/In0.15Ga0.85As QDs. Waveguide FP lasers with a 3μm-wide ridge were fabricated, with a cavity length of roughly 1mm. For eye-diagram and bit-error-rate (BER) evaluations, an individual longitudinal mode of the optically isolated laser was sifted out using a fiber FP tunable filter. The spectrally filtered mode was amplified by passing it through optical amplifiers and then externally modulated.

Figure 1(a) shows an overall emission spectrum of the QD laser taken at a continuous wave current of 85mA. The output power is 50mW per two laser facets. The spectrum comprises a series of longitudinal FP modes separated by 0.22nm. The zeroth-order mode, i.e., the mode of the maximum intensity, is centered at 1265.5nm. Its full width at half maximum is about 2nm. An external FP etalon can be adjusted to transmit only one longitudinal mode. We experimented with longitudinal modes that fall into a wavelength interval from 1263.3 to 1266.4nm. These modes are indicated in Figure 1(a) by an index ranging from −10 to +4. Figure 1(b) shows a filtered intensity of the −10th longitudinal mode.

Modal RIN for the spectrally filtered FP mode is shown in Figure 2. At low frequencies, the RIN spectrum is nearly flat at a level of −105dB/Hz. With higher frequencies, the modal RIN drops from −120 to −145dB/Hz in the 0.1–10GHz range. If a received power is sufficiently high, the BER is governed by the total RIN, i.e., an integral over the relative intensity noise spectrum. Our calculation has shown that the total RIN of 0.4% would be acceptable for error-free transmission (BER<10−15). Using the data in Figure 2, the total RIN was calculated to be 0.21% over the full frequency range of analysis (0.001–10GHz).





Figure 3. Eye diagram for the zeroth mode at –3dBm received power at the photodetector.
An individual longitudinal mode after spectral filtering was modulated at 10Gb/s by a 231−1 pseudorandom binary non-return-to-zero sequence (see Figure 3) and shows an eye pattern. We obtained error-free operation with a BER of less than 10−13. A similar BER was achieved for the modes with the highest intensity (mode order ranges from −7 to +2): see Figure 1(a).

The results demonstrate that we can reduce the requirements for precise lasing wavelengths because channel separation is naturally pre-determined by only one parameter, which is cavity length. All channels can be stabilized and tracked simultaneously. Sufficiently long wavelengths make such lasers compatible with optical and optoelectronic components based on silica fiber or silicon-based planar waveguides. The multimode QD laser shows promise for the development of simple and cost-effective high-bandwidth optical interconnects for silicon-based photonic integrated circuits.

Future optimization of the comb laser is aimed at increasing the intensity of individual FP modes and further improving their RIN level, as well as increasing the number of channels suitable for optical transmission. In cooperation with academic and industrial partners, we have also started to develop transmitters on photonic integrated circuits in III-V materials and on silicon photonic chips. In each case, the transmitter comprises a laser fiber-coupled to a demultiplexer that separates the comb input channels, modulators for each of the channels, a multiplexer that combines the modulated channels, and a coupler into the output fiber. We expect to demonstrate the feasibility of our comb laser's for short- to medium-reach WDM transmission, such as 100Gb/s Ethernet and passive optical networks.


LUIS RINCON
CEDULA: 18257927
MATERIA: EES
SECCION: 2